Functions with integer-valued divided differences

نویسندگان

چکیده

Let $s_0,s_1,s_2,\ldots$ be a sequence of rational numbers whose $m$th divided difference is integer-valued. We prove that $s_n$ polynomial function in $n$ if $s_n \ll \theta^n$ for some positive number $\theta$ satisfying $\theta < e^{1 + \tfrac{1}{2} \cdots+ \tfrac{1}{m}} -1$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer-valued continuous functions

© Bulletin de la S. M. F., 1969, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

Integer-valued definable functions

We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a function f : [0,∞) → R is such that f(N) ⊆ Z, then either sup|x̄|≤r f(x̄) grows faster than exp(r), for some δ > 0,...

متن کامل

About polynomials whose divided differences are integer valued on prime numbers

We show here how to construct bases of the Z-module Int(P,Z) of polynomials that are integer-valued on the prime numbers together with their finite divided difference, that is, Int(P,Z) = { f ∈ Q[x] | ∀p, q ∈ P f(p) ∈ Z and f(p)− f(q) p− q ∈ Z } .

متن کامل

Divided differences of implicit functions

Divided differences can be viewed as a discrete analogue of derivatives and are commonly used in approximation theory, see [1] for a survey. Recently, the second author and Lyche established two univariate chain rules for divided differences [2], both of which can be viewed as analogous to Faà di Bruno’s formula for differentiating composite functions [6,7]. One of these formulas was simultaneo...

متن کامل

Integer Valued AR(1) with Geometric Innovations

The classical integer valued first-order autoregressive (INA- R(1)) model has been defined on the basis of Poisson innovations. This model has Poisson marginal distribution and is suitable for modeling equidispersed count data. In this paper, we introduce an modification of the INAR(1) model with geometric innovations (INARG(1)) for model- ing overdispersed count data. We discuss some structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2022

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2021.06.020